Exercise 175

As a point P moves around a circle, the measure of the angle changes. The measure of how fast the angle is changing is called angular speed, ω, and is given by $\omega=\theta / t$, where θ is in radians and t is time. Find the angular speed for the given data. Round to the nearest thousandth.
a. $\theta=\frac{7 \pi}{4} \mathrm{rad}, t=10 \mathrm{sec} \mathrm{b} . \theta=\frac{3 \pi}{5} \mathrm{rad}, t=8 \mathrm{sec} \mathrm{c} . \theta=\frac{2 \pi}{9} \mathrm{rad}, t=1 \mathrm{~min} \mathrm{~d} . \theta=23.76 \mathrm{rad}$, $t=14 \mathrm{~min}$

Solution

Use the formula for angular speed,

$$
\omega=\frac{\theta}{t},
$$

where θ is in radians and t is in seconds.

Part (a)

If $\theta=\frac{7 \pi}{4} \mathrm{rad}$ and $t=10 \mathrm{sec}$, then

$$
\omega=\frac{\frac{7 \pi}{4} \mathrm{rad}}{10 \mathrm{sec}} \approx 0.550 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Part (b)

If $\theta=\frac{3 \pi}{5} \mathrm{rad}$ and $t=8 \mathrm{sec}$, then

$$
\omega=\frac{\frac{3 \pi}{5} \mathrm{rad}}{8 \mathrm{sec}} \approx 0.236 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

$\underline{\text { Part (c) }}$

If $\theta=\frac{2 \pi}{9} \mathrm{rad}$ and $t=1 \mathrm{~min}$, then

$$
\omega=\frac{\frac{2 \pi}{9} \mathrm{rad}}{1 \min \times \frac{60 \mathrm{sec}}{1 \min }} \approx 0.012 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Part (d)

If $\theta=23.76 \mathrm{rad}$ and $t=14 \mathrm{~min}$, then

$$
\omega=\frac{23.76 \mathrm{rad}}{14 \mathrm{~min} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}}} \approx 0.028 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

